The Hardness of 3 - Uniform Hypergraph Coloring
نویسندگان
چکیده
We prove that coloring a 3-uniform 2-colorable hypergraph with c colors is NP-hard for any constant c. The best known algorithm [20] colors such a graph using O(n1/5) colors. Our result immediately implies that for any constants k ≥ 3 and c2 > c1 > 1, coloring a k-uniform c1-colorable hypergraph with c2 colors is NP-hard; the case k = 2, however, remains wide open. This is the first hardness result for approximately-coloring a 3-uniform hypergraph that is colorable with a constant number of colors. For k ≥ 4 such a result has been shown by [14], who also discussed the inherent difference between the k = 3 case and k ≥ 4. Our proof presents a new connection between the Long-Code and the Kneser graph, and relies on the high chromatic numbers of the Kneser graph [19, 22] and the Schrijver graph [26]. We prove a certain maximization variant of the Kneser conjecture, namely that any coloring of the Kneser graph by fewer colors than its chromatic number, has ‘many’ non-monochromatic edges.
منابع مشابه
Reducing uniformity in Khot-Saket hypergraph coloring hardness reductions
In a recent result, Khot and Saket [FOCS 2014] proved the quasi-NP-hardness of coloring a 2-colorable 12-uniform hypergraphwith 2 Ω(1) colors. This result was proved using a novel outer PCP verifier which had a strong soundness guarantee. In this note, we show that we can reduce the arity of their result by modifying their 12-query inner verifier to an 8-query inner verifier based on the hyperg...
متن کاملA note on reducing uniformity in Khot-Saket hypergraph coloring hardness reductions
In a recent result, Khot and Saket [FOCS 2014] proved the quasi-NP-hardness of coloring a 2-colorable 12-uniform hypergraph with 2(logn) Ω(1) colors. This result was proved using a novel outer PCP verifier which had a strong soundness guarantee. We reduce the arity in their result by modifying their 12-query inner verifier to an 8-query inner verifier based on the hypergraph coloring hardness r...
متن کاملApproximate Hypergraph Coloring under Low-discrepancy and Related Promises
A hypergraph is said to be χ-colorable if its vertices can be colored with χ colors so that no hyperedge is monochromatic. 2-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 2-colorable k-uniform hypergraph, it is NP-hard to find a 2-coloring miscoloring fewer than a fraction 2−k+1 of hypered...
متن کامل$2^{(\log N)^{1/4-o(1)}}$ Hardness for Hypergraph Coloring
We show that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with 2 1/8−o(1) colors, where N is the number of vertices. There has been much focus on hardness of hypergraph coloring recently. In [17], Guruswami, H̊astad, Harsha, Srinivasan and Varma showed that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with 2 Ω( √ log log N) colors. Their result is obtained by ...
متن کامل2(logN) Hardness for Hypergraph Coloring
We show that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with 2(logN) colors, where N is the number of vertices. There has been much focus on hardness of hypergraph coloring recently. In [17], Guruswami, Håstad, Harsha, Srinivasan and Varma showed that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with 22 √ log logN) colors. Their result is obtained by compos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Combinatorica
دوره 25 شماره
صفحات -
تاریخ انتشار 2002